# Unique Morse Code Words

#1

International Morse Code defines a standard encoding where each letter is mapped to a series of dots and dashes, as follows: `"a"` maps to `".-"`, `"b"` maps to `"-..."`, `"c"` maps to `"-.-."`, and so on.

For convenience, the full table for the 26 letters of the English alphabet is given below:

`[".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...","-","..-","...-",".--","-..-","-.--","--.."]`

Now, given a list of words, each word can be written as a concatenation of the Morse code of each letter. For example, "cba" can be written as "-.-..--...", (which is the concatenation "-.-." + "-..." + ".-"). We'll call such a concatenation, the transformationÂ of a word.

Return the number of different transformations among all words we have.

```Example:
Input: words = ["gin", "zen", "gig", "msg"]
Output: 2
Explanation:
The transformation of each word is:
"gin" -> "--...-."
"zen" -> "--...-."
"gig" -> "--...--."
"msg" -> "--...--."

There are 2 different transformations, "--...-." and "--...--.".
```

Note:

• The length of `words` will be at most `100`.
• Each `words[i]` will have length in range `[1, 12]`.
• `words[i]` will only consist of lowercase letters.

#2

Form all possible combinations using a map.

``````func uniqueMorseRepresentations(words []string) int {
if len(words)==0{return 0 }
codes := []string{".-","-...","-.-.","-..",".","..-.","--.","....","..",".---","-.-",".-..","--","-.","---",".--.","--.-",".-.","...",
"-","..-","...-",".--","-..-","-.--","--.."}
m := make(map[string]struct{}, 0)
//var t strings.Builder
for _, word := range words {
t := ""
for _, ch  := range word{
t += codes[ch-'a']
}
m[t] = struct{}{}
}

return len(m)
}
``````